45. Acetale von 1,2,3,4-Tetraoxobutan: Herstellung und Struktur von *rac-* und *meso-*2,3,3,4,4,5-Hexamethoxytetrahydrofuran

von Peter Xaver Itena), Hans Peter Weberb) und Conrad Hans Eugstera)

a) Organisch-chemisches Institut der Universität Zürich, Rämistrasse 76, 8001 Zürich
b) Sandoz AG, Pharma-Departement, Chemische Forschung, 4002 Basel

Zum ehrenden Andenken an Herrn Professor Dr. Dr. h.c. *Hans Schmid*, der am 24.3.77 seinen 60. Geburtstag gefeiert hätte

(2.XII.76)

Acetals of 1,2,3,4-tetraoxobutane: preparation and structure determination of rac- and meso-2,3,3,4,4,5-hexamethoxy-tetrahydrofuran

Summary

Oxidation of 3,4-dimethoxyfuran with 2 equiv. of bromine at -75° in the presence of triethylamine and methanol leads to a mixture of *rac*- and *meso*-2,3,3,4,4,5-hexamethoxy-tetrahydrofuran (cf. *Scheme 1*, 4 and 5). The structure of the crystalline *rac*-compound has been determined by X-ray analysis.

In Zusammenhang mit einer Untersuchung über die Reaktivität von 3,4-Dimethoxyfuran, über die später berichtet werden soll, führten wir auch dessen Oxydation mit Brom in Methanol unter solvolytischen Bedingungen (sog. «Bromalkoxylierung») aus. Diese bei zahlreichen einfachen Furanen gut untersuchte Reaktion [1] führt bekanntlich zu Verbindungen, die als cyclische Acetale des Maleinaldehyds (cis- und trans-2,5-Dialkoxy-2,5-dihydrofuran) bzw. seiner Substitutionsprodukte aufgefasst werden können. Mit 3,4-Dimethoxyfuran als Ausgangsmaterial können als Zwischenprodukte entweder 2,3,3,4-Tetramethoxy-2,3-dihydrofuran (2; 1,2-Addition) oder cis- und trans-2,3,4,5-Tetramethoxy-2,5-dihydrofurane (3; 1,4-Addition) erwartet werden, d.h. Verbindungen, die selbst wieder eine nucleophile Enoläther-Doppelbindung enthalten, welche in analoger Reaktion weiterreagieren kann. Das Experiment bestätigte diese Annahme: Wurde 3,4-Dimethoxyfuran (1) mit 2 Mol-Äqu. Brom in Methanol bei -75° in Gegenwart von Triäthylamin umgesetzt, so bildeten sich die stereoisomeren Hexamethoxy-tetrahydrofurane 4 und 5 zu 23,9 bzw. 22,6% 1), welche durch Säulenchromatographie an Kieselgel getrennt wurden. Dabei

Gas-chromatographische Bestimmung. Zwei weitere Produkte (20,8 bzw. 28,5%) waren bromhaltige Ketone, die noch nicht untersucht wurden.

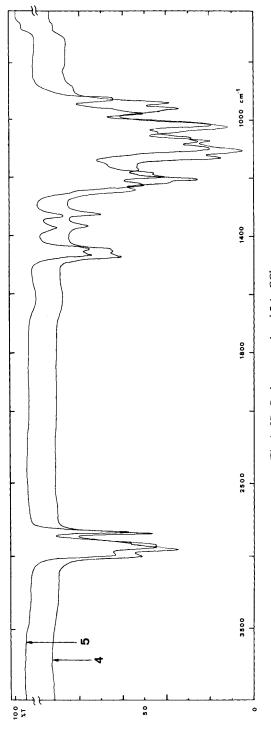


Fig. 1. IR.-Spektren von 4 und 5 in CCl4

Schema 1

wurde 4 kristallin (Smp. 81,5°) und 5 als Öl erhalten. Beide Verbindungen verdienen als Acetale des 1,2,3,4-Tetraoxobutans Beachtung.

5 ¹H-NMR. 4,73sH-C(2)4,83s(CDCl₃) H-C(5)4,83s 4,73s CH_3O 3,43s (12H) 3,40s (6H) 3,46s (6H) 3,46s (12H) 13C-NMR. a) C(2), C(5)106,1 d 105.0d $^{3}J(C(2), H-C(5)) = 4.7 \text{ Hz}$ (4 in Aceton-d₆; $^{3}J(C(2), H-C(5)) = 3,4 \text{ Hz}$ 5 in CDCl₃) C(3), C(4)104,0s 103.7s CH_3O 50,8q, 51,2q, 55,3q 51,0q, 51,3q, 55,7q

Tabelle 1. NMR.-Daten von 4 und 5

Da aufgrund der sehr ähnlichen Spektraldaten (s. Tab. 1 und Fig. 1) keine Strukturzuordnung möglich war²), wurde sie durch eine Röntgenstrukturanalyse getroffen. Sie ergab, dass der kristallinen Verbindung die *rac*-Form 4 zuzuordnen ist. In Fig. 2 ist eine stereoskopische Abbildung dieser Molekel gegeben, aus der hervorgeht, dass die Konformation der *rac*-Verbindung im Kristall eine nahezu exakte C_2 -Symmetrie hat. Diese Symmetrie bezieht sich nicht nur auf die Stellung der Methoxygruppen, sondern erstreckt sich auf feinste Einzelheiten der Struktur. Als Beispiel sind in Tab. 2 die zueinander symmetrischen Bindungswinkel zusammengestellt, woraus die symmetrische Deformation der Bindungswinkel eindrücklich hervorgeht. Möglicher-

a) Chemische Verschiebungen aus rauschentkoppelten, Multiplizitäten aus off-resonance und Kopplungskonstanten aus unentkoppelten Spektren.

²⁾ Vorversuche zur chromatographischen Trennung in die Enantiomere durch Chromatographie an chiralen Adsorptionsmitteln wurden nach Vorliegen der Röntgenstrukturanalyse abgebrochen

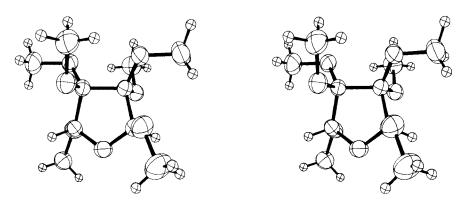


Fig. 2. Stereoskopische Abbildung der Molekel mit den 50%-Wahrscheinlichkeitsellipsoiden für die anisotrope Schwingung der C- und O-Atome. Die H-Atome sind mit einem einheitlichen isotropen Temperaturfaktor von B = 1 Å² gezeichnet.

Tabelle 2. Bindungswinkel, die durch die molekulare C_2 -Symmetrie verbunden sind. ϕ_1 ist der in Kolonne 1 angegebene Winkel, ϕ_2 der dazu symmetrische. $\langle \phi \rangle$ ist der Mittelwert von ϕ_1 und ϕ_2 , $|\Delta|$ der Betrag der Differenz. Die mittlere Standardabweichung eines Bindungswinkels, berechnet aufgrund der Standardabweichungen aus der LS.-Verfeinerung, beträgt im Mittel $0,4^{\circ}$

Winkel	ϕ_1	ϕ_2	$\langle \phi \rangle$	141
O-C(1)-C(2)	104,9	105,6	105,3	0,7
O-C(1)-C(1A)	112,4	112,2	112,3	0,2
C(2)– $C(1)$ – $O(1A)$	111,2	111,0	111,1	0,2
C(1)-C(2)-C(3)	101,2	100,3	100,7	0,9
C(1)-C(2)-O(2A)	102,2	102,2	102,2	0,0
C(1)-C(2)-O(2B)	116,8	116,7	116,7	0,1
C(3)-C(2)-O(2A)	113,4	113,8	113,6	0,4
C(3)-C(2)-O(2B)	109,5	109,7	109,6	0,2
O(2A)-C(2)-O(2A)	113,1	113,4	113,2	0,2
C(1)-O(1A)-C(1A)	112,8	112,1	112,4	0,7
C(2)-O(2A)-C(2A)	118,8	118,1	118,4	0,7
C(2)-O(2B)-C(2B)	114,6	115,0	114,8	0,4

weise bleibt die molekulare C_2 -Symmetrie der Verbindung 4 auch in Lösung durch die Pseudorotation unbeeinflusst.

Röntgenstrukturanalyse von 4. – Kristalldaten. $C_{10}H_{20}O_7$, M=252,3, farblos-klare, trikline Prismen, Raumgruppe $P\bar{1}$, a=7,674 (2), b=8,594 (2), c=11,259 (3) Å, $\alpha=94,05$ (2), $\beta=105,14$ (2), $\gamma=113,89$ (2)°, V=642,1 ų, Z=2, $d_c=1,30$ g/cm³. Die Intensitäten von 1910 unabhängigen Beugungsmaxima im Bereich $\theta \le 60^\circ$ wurden auf einem CAD-4F Diffraktometer mit $CuK\alpha$ -Strahlung (Graphit-Monochromator) gemessen: $\omega/2$ θ -Scan, $\Delta\omega=0,8+0,5$ tg θ , 6000 Zählimpulse pro Scan bei $t(\max)=120$ s. Die Datenreduktion (ohne Absorptionskorrektur) ergab 1836 signifikante Intensitäten (I > 3 σ (I)), $\bar{B}=3,7$ Ų, $\langle |E| \rangle = 0,777$, $\langle |E^2-1| \rangle = 0,959$, $\langle |E^2| \rangle = 0,959$.

Strukturanalyse und Verfeinerung. Die Struktur wurde nach der «Multisolution»-Methode [2] gelöst (1500 Phasentripel mit $|E_1E_2E_3| > 4.5$, fünf variable Phasen, eindeutige Indikation der kor-

rekten Kombination durch Konsistenzfaktoren). Die Verfeinerung der Struktur nach der Methode der Kleinsten Quadrate in der Block-diagonalen Approximation (LS.) mit anisotropen Schwingungsparametern für die C- und O-Atome, isotropen Parametern für die H-Atome, einem Massstabfaktor k und einem isotropen Extinktionskoeffizienten G [3] (total 235 variable Parameter) führte bei Konvergenz der Zielfunktion $Z = \sum_{h} \omega_h$ ($|F_0| - k \cdot G \cdot |F_c|$)² zu einem R = 0,075 für die

Tabelle 3. Zellkoordinaten mit Standardabweichungen (LS.). Die Werte für die C- und O-Atome sind mit 10⁵, diejenigen für die H-Atome mit 10⁴ multipliziert

0	80 724 (24)	11 624 (20)	7 239 (12)	H(1)	5 608 (45)	1479 (39)	423 (27)
C(1)	70 223 (26)	21 348 (22)	9 301 (15)	H(1AX)	5 877 (79)	2922 (67)	-1124(48)
C(2)	72 866 (24)	23 355 (21)	23 536 (15)	H(1AY)	7 726 (60)	4853 (51)	- 873 (37)
C(3)	94 309 (25)	24 212 (22)	28 994 (15)	H(1AZ)	8 050 (85)	3080 (72)	-1022(51)
C(4)	93 515 (28)	10 763 (24)	18 605 (17)	H(2AX)	5 925 (80)	1614 (67)	4137 (49)
O(1A)	77 848 (23)	37 497 (19)	6 167 (13)	H(2AY)	4 021 (73)	-272(62)	3464 (44)
C(1A)	73 375 (39)	36 547 (33)	-7005(21)	H(2AZ)	6 298 (91)	-110(77)	3986 (56)
O(2A)	57 345 (20)	7 799 (18)	24 041 (13)	H(2BX)	4 291 (74)	2831 (61)	2383 (45)
C(2A)	54 754 (37)	4 939 (36)	35 886 (24)	H(2BY)	5 425 (**)	4935 (86)	2962 (62)
O(2B)	72 489 (20)	38 003 (18)	29 250 (13)	H(2BZ)	5 321 (99)	4187 (82)	1565 (61)
C(2B)	54 243 (39)	39 532 (37)	24 114 (27)	H(3AX)	12 627 (70)	3024 (60)	4620 (43)
O(3A)	96 917 (21)	20 529 (19)	40 951 (12)	H(3AY)	11 694 (68)	1904 (58)	5567 (41)
C(3A)	115 322 (37)	19 613 (40)	46 550 (24)	H(3AZ)	11 514 (69)	928 (58)	4195 (42)
O(3B)	109 877 (20)	39 584 (18)	28 379 (12)	H(3BX)	11 263 (74)	5254 (62)	4476 (45)
C(3B)	115 083 (36)	55 124 (29)	36 869 (23)	H(3BY)	12 946 (81)	6310 (69)	3851 (50)
O(4A)	86 461 (27)	- 5 752 (20)	21 321 (15)	H(3BZ)	10 718 (82)	6090 (69)	3296 (50)
C(4A)	88 418 (58)	-17682(40)	13 070 (33)	H(4)	10 715 (54)	1381 (46)	1782 (33)
				H(4AX)	10 251 (86)	-1238(72)	1261 (53)
				H(4AY)	8 569 (77)	-2892(65)	1641 (47)
				H(4AZ)	7 910 (88)	-1980(73)	453 (53)

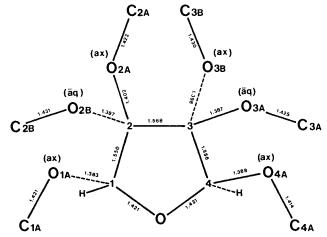
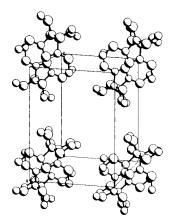



Fig. 3. Numerierung der Atome und Bindungslängen. Die mittlere Standardabweichung der Bindungslängen beträgt 0,006 Å (LS.)

1836 signifikanten Strukturamplituden³). Es wurde die Gewichtsfunktion $\omega_h = [1/\sigma_h^2] \cdot \exp([8 \, H^2 p/q(p+q)] \cdot \sin^2 \theta/\lambda^2)$ [4] verwendet mit p=q=3 Å-². Die Grösse σ_h , die Standardabweichung der Strukturamplitude $|F_h|$, wurde definiert als $\sigma_h \sim [\sigma(I_h)/2\sqrt{I_h}] \cdot L$ (I_h ist die gemessene Intensität mit der Standardabweichung $\sigma(I_h)$, L ist der Lorentz-Polarisationsfaktor). Der Endwert von G betrug 10,5 (3) cm⁻¹.

Die Koordinaten mit den LS.-berechneten Standardabweichungen sind in Tab. 3 zusammengestellt (Numerierung s. Fig. 3). Der mittlere Positionsfehler für C- und O-Atome beträgt 0,003 Å, für H-Atome 0,06 Å. Der Mittelwert der sechs (C-O)-Bindungslängen vom Ring-Kohlenstoffatom zum Methoxysauerstoffatom sowie derjenige der sechs (O-C)-Bindungslängen von diesem Sauerstoffatom zum endständigen Methylkohlenstoffatom ergibt signifikant verschiedene Werte mit $\langle C(Ring)-O\rangle = 1,391$ Å, $\sigma = 0,007$ Å und $\langle O-C(Methyl)\rangle = 1,424$ Å, $\sigma = 0,006$ Å (s. Fig. 3). Der gesättigte Furanring hat eine Twist-Konformation mit den Fünfringparametern $\Delta = 5^{\circ}$ und $\psi_{\rm m} = 38^{\circ}$ [5].

Fig. 4 zeigt die Packung der Molekeln in der triklinen Einheitszelle.

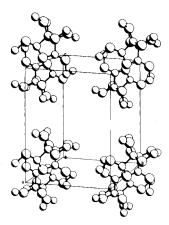


Fig. 4. Packungsdiagramm in der Projektion entlang der a-Achse. Die Wasserstoffatome wurden weggelassen, die grösseren Kugeln bezeichnen die Sauerstoffatome

Wir danken den Herren Prof. W. v. Philipsborn und dipl. chem. U. Vögeli für NMR.-Spektren, Herrn Prof. M. Hesse und Mitarbeitern für Massenspektren und Herrn H. Frohofer und Mitarbeiterinnen für IR.-Spektren und Verbrennungsanalysen.

Experimenteller Teil

1. Allgemeines. Schmelzpunkte (Smp.) wurden mit einem Mettler Schmelzpunktautomaten Typ FP 5/52 bestimmt. Dünnschichtchromatographie (DC.) an Fertigfolien Macherey-Nagel & Co., Polygram SIL N-HR/UV₂₅₄; Erkennen der Flecken durch Besprühen mit konz. H₂SO₄ und Erwärmen im Trockenschrank auf ca. 120° während 5–10 Min. Analytische Gas-chromatogramme (GC.) wurden mit einem Carlo-Erba Fraktovap Modell GI, IR.-Spektren mit einem Perkin-Elmer-Spektrographen Modell 257 mit Gitteroptik (Angaben in cm⁻¹), ¹H-NMR.-Spektren mit einem Varian T-60-MHz-Spektrometer und ¹³C-NMR.-Spektren mit einem Varian XL-100-MHz-Spektrometer aufgenommen (chemische Verschiebungen in ppm relativ zu Tetramethylsilan als internem Standard

³⁾ $R = \sum_{h} ||F_{o}| - k \cdot G ||F_{c}|| / \sum_{h} |F_{o}||$.

- (=0 ppm); Kopplungskonstanten J in Hz; s = Singulett, d = Dublett, q = Quartett). Massenspektren wurden auf einem Varian MAT 711 bei 70 eV im Direkteinlass gemessen (Angabe in Massenzahlen m/e; in Klammern die relativen Intensitäten bezüglich des Basispiks=100%; Interpretation der Fragmente nur aufgrund der Massenzahlen, nicht gesichert durch Hochauflösung).
- 2. Hexamethoxytetrahydrofurane 4 und 5. In einem Zweihalskolben mit Magnetrührer wurde zu einer Lösung von 5,80 g frisch destilliertem 1, 18,6 g Triäthylamin und 50 ml abs. Methanol bei −75° eine Lösung von 14,4 g Brom in 50 ml abs. Methanol während ½ Std. getropft. Anschliessend liess man auf RT. aufwärmen und rührte über Nacht weiter. Dann wurde auf 0° abgekühlt, das Gemisch unter Umrühren in eine eiskalte, ges. NaHCO₃/Na₂CO₃-Pufferlösung, pH 8,5–9 gegossen, 5mal mit je 150 ml Äther extrahiert, die vereinigten Extrakte über Na₂CO₃ getrocknet, filtriert und das Lösungsmittel im RV. abgezogen. Das bräunliche Öl wurde an einer Kieselgelsäule (Merck Nr. 7734; 4,5 × 60 cm) mit Petroläther (Sdp. 30–60°)/Äther (Gradient 6:4 → 3:7) in 3 Fraktionen aufgetrennt. Untersuchung der Fraktionen mittels DC. Diisopropyläther/Methanol/Pyridin 100:10: 0,5: Fraktion 1: Rf 0,46 (Nebenprodukt); Fraktion 2: Rf 0,36, farblose Kristalle, Verbindung 4; Fraktion 3: Rf 0,25, farbloses Öl, Verbindung 5. Untersuchung der Fraktionen im GC. (Glaskapillarkolonne XE-60, 17 m/0,3 mm, Ofentemp. 120°, Trägergas H₂, 0,2 Atm., Retentionszeiten in Sek.: Fraktion 1 (Zweikomponenten-Nebenprodukt): 111, 113; Fraktion 2: 124; Fraktion 3: 159.
 - 1. Fraktion: 3,68 g farbloses Öl, destilliert im Kugelrohr bei 70-80°/10⁻² Torr.
- 2. Fraktion=Verbindung 4: 1,87 g (16%) farblose Kristalle, 2mal umkristallisiert aus Diisopropyläther, Smp. 81,5°, Sdp. im Kugelrohr $60-70^{\circ}/10^{-2}$ Torr. MS.: 237 (0,2, M^+ CH₃), 221 (0,4, M^+ OCH₃), 189 (2, M^+ CH₃OH– OCH₃), 177 (3), 161 (31), 146 (7), 188 (100), 105 (6), 103 (73), 75 (43). IR. (CCl₄): 2995, 2942, 2912, 2837, 1468, 1448, 1362, 1321, 1240, 1200, 1125, 1100, 1067, 1019, 957, 937 (s. Fig. 1). NMR.: s. Tab. 1.

C₁₀H₂₀O₇ (252,27) Ber. C 47,61 H 7,99% Gef. C 47,85 H 7,76%

3. Fraktion=Verbindung **5**: 2,0 g (17%) farbloses Öl, 2mal destilliert im Kugelrohr bei 60-70°/ 10⁻² Torr. – MS.: 237 (0,1, M^+ – CH₃), 221 (0,3, M^+ – OCH₃), 189 (2, M^+ – CH₃OH – OCH₃), 177 (3), 161 (27), 146 (2), 118 (100), 105 (5), 103 (75), 75 (47). – IR. (CCl₄): 2997, 2947, 2920, 2840, 1469, 1448, 1375, 1334, 1229, 1200, 1187, 1103, 1080, 1067, 1020, 981, 937. – NMR.: s. Tab. 1.

C₁₀H₂₀O₇ (252,27) Ber. C 47,61 H 7,99% Gef. C 47,51 H 8,18%

LITERATURVERZEICHNIS

- [1] N. Clauson-Kaas, F. Limborg & J. Fakstorp, Acta chem. Scand. 2, 109 (1948); N. Elming, Adv. org. Chemistry Vol. 2, 67, Interscience, New York 1960; P. Bosshard & C. H. Eugster, Adv. heteroc. Chemistry Vol. 7, 377, Academic Press, New York 1966.
- [2] G. Germain & M. M. Woolfson, Acta crystallogr. B24, 91 (1968).
- [3] P. Coppens & W. C. Hamilton, Acta crystallogr. A26, 71 (1970).
- [4] J. D. Dunitz & P. Seiler, Acta crystallogr. B29, 589 (1973).
- [5] C. Altona, H. J. Geise & C. Romers, Tetrahedron 24, 13 (1968).